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London SW7 2BZ. U K  
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Abstract. The electron Green functions are calculated for a semi-infinite itinerant electron 
ferromagnet in the framework of the infinite-U Hubbard model close to half-filling. It is 
shown that the ferromagnetic state is saturated in the surface as well as in the bulk for small 
enough hole concentration. At the same time the empty states near the Fermi level (and the 
occupied ones for the case of excess electrons) are depolarized due to spin polaron effects. 

1. Introduction 

The problem of magnetism at transition metal surfaces [ 11 is interesting both in itself 
and in connection with general investigations of itinerant electron ferromagnets. Most 
spectroscopic methods such as photoemission, thermoemission and field emission are 
surface sensitive and their proper interpretation requires a theory of the surface elec- 
tronic structure in itinerant electron ferromagnets. It is particularly necessary for the 
interpretation of results of such contemporary methods as one- and two-electron capture 
spectroscopy which investigate only the surface layer [2, 11. Numerous band structure 
calculations for magnetic layers and surfaces (see e.g. [3] and also the review [l] and 
references therein) are an important part of such theory. But it is known from the 
consideration of bulk ferromagnetism in the Hubbard model that correlation effects that 
are beyond the local spin density functional calculations may change drastically the 
character of electron states, especially due to ‘spin polaron’ or ‘non-quasiparticle’ effects 
[MI. These lead. for example, to depolarization of electron states near the Fermi 
surface in contradiction with the usual band picture [6,7]. Therefore the consideration 
of surface states in itinerant electron ferromagnets taking into account strong-correlation 
effects seems to be important. The present paper considers such effects in the simplest 
model of a saturated ferromagnetic state based on the infinite-U limit of the Hubbard 
model. 

2. Majority-spin states 

Let the ferromagnet occupy the half-space z 3 0 with an infinite potential barrier at z = 
-1 ( x ,  y ,  z are Cartesian coordinates in units of the lattice constants). We represent the 
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lattice site vectorsR as (p ,  z )  where z = 0.1.2, . . . andp is the component of vectorR 
in the xy-plane. We assume the transfer integrals fRR. to be of the form 
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if z = z ' .p  # p '  

t&q' = t ,  ifp = p' ,  Iz - z'l = 1 (1) 1% otherwise. 

We start with the Hubbard Hamiltonian 

where cAo creates an electron of spin a on site R and nRo = c;;,cRo in the limit U = =. 
We assume initially that the average number of electrons per site is ) I  < 1 and the 'hole' 
concentration c = 1 - n is small. So the saturated ferromagnetic state is stable in the 
bulk case according to Nagaoka's theorem and numerous following considerations ([8] 
and references therein). The Hamiltonian (2) may be rewritten in the form [ S ,  61 

H =  - c PtRR*c;,cROP = c fRR'Y2X$? (3) 
" 0  RR.3  

( 2  .*'all) (Z.Z'>O) 

where P is the projection operator on the state without doubly occupied sites and 
P R O  = /RO)(Rol are the Hubbard X-operators. IRO) (IRa)) being the states of site R 
without electrons (with one electron with spin projection o = e). 

To consider the electron states one should calculate the retarded anti-commutator 
Green functions 

= ((G'/~R?))E (4) 

with the Hamiltonian (3). Since 

cm - R R 
t - p a  + O;u'.-o 

these Green functions are equivalent to the usual one-electron (more exactly hole) ones 
in the infinite-U limit when operators X$-. creating a doubly occupied site are elim- 
inated by the projection operator. Similar calculations for the bulk case have been 
carried out in [5].  We restrict ourselves to the case of zero temperature and consider the 
saturated ferromagnetic ground state lqO) so X,+- Iq") = 0 for any R. Then for up-spin 
electrons(a = +)theequationsofmotionfortheGreenfunctionsareformallythesame 
asin the nonmagnetic case [5] .  Carryingout the Fourier transformation in thexy-plane 

c ; ~ ~ ( E )  = 13 G ~ G  kll) exp(ikl1. (p  - p ' ) )  (5) 

(the integral being over the Brillouinzone of the surface plane lattice) and putting z' = 
0 (which corresponds to considering surface states) one obtains the equations 

(E-&ll(kll))CUqI E)-r , (G: - l . o (kU.E)+G:+ , .o (k~~ .E) )  = O  for2 2 1 (60) 

(66) (E-Ell(kU))Gih(kli, E )  - trGZ(kll, E )  = 1 

where 
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q(kll) = E top. exp(ikll. - P ' ) ) '  
P -  

The equations (6) may be formally extended into the negative-z region by making the 
formal assumption that G-,u = CA). So one gets 

( E -  &II(~II))GTo(~II, E )  - li(GT-i.o(k11. E )  + GT+j.o(kll, E ) )  

6 z o [ 1  - I,GMJ(~II, E ) ] .  (7) 
These equations may be easily solved by Fourier transformation: 

dk 
G&(kll, E )  = 1 G + ( k ,  E) exp(ik,z) ( k  = (kll, k z ) ) .  (8) 

-r 

As a result we obtain for the 'bulk' and 'surface' Green functions 

where 

P = E - &ll(kll) lY = .\/p - 4t: 
(the branch with Im CY > 0 at Im E > 0 is chosen) and 

~ ( k )  = ~ll(kl l )  + 2r, COS k ,  

is the bulk electron spectrum. So for the surface density of states 

for U = + we obtain the usual expression 

with the integral extending over the Brillouin zone of the bulk metal. The multiplier 
2 sin2 k, is simply the square of the wave function of the surface problem 

tpk,(z) = l&sin k,z (12) 

(with &function normalization) in the zeroth layer. 

3. Minority-spin states 

Now let us calculate the Green function for the 'wrong' spin projection U = -. The 
corresponding states do not exist in the Hartree-Fock approximation in the U = m 
limit and have a purely correlational nature, (being states of 'spin polaron' or 'non- 
quasiparticle' type [GI). It is convenient to exploit the multiplication rules for X- 
operators 
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p- -"XI- (13) 

F R , R ~ , R , ( E )  = ( W ~ x i ~  I X R ~ E  (14) 

GRR'(E) = FRR..Q,(E) (15) 

R -  R R 

and introduce the Green function 

so that 

(cf [ 5 , 6 ] ) .  In this way we 'decompose' the hole with spin down into the hole with spin 
up and a magnon. Since the charcteristic magnon frequency (5 is of order of c l f l [5]  the 
magnon cannot move in the lowest order in c. In  this order the equation of motion for 
the function Fis verysimple [5.6] 

EFR,R?,.Y(E) - ~R,R~FR,*?,R,(R = 6~~~,Wklxi!'b (16) 
R i  

The k?-dependence of Fmay be exhibited explicitly by writing 

FR,R:.,V = ~ R ? R . $ R ~ R , ( E )  (17) 

and 

G k ( E )  = 6 R R ' 9 R R ( E ) .  (18) 
So in the lowest-order approximation in c the function GRR.(E) is a local one, i.e. the 
holes with spin down are localized. Nevertheless they are essential for calculations of 
the total density of states. 

Carrying out the Fourier transformations similar to ( 5 )  and (8) we can obtain for the 
function 3 

where 

This average may be calculated from the Green function Gktp(E) and so 

wheref(E) is the Fermi distribution function. It is easy to obtain from (9a) 

n(k)  = 2sin2kfk + n, (k)  (23) 
where fk = f (&(k)) ,  and 

where 9 is the symbol for principal value. Calculating 
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N i I E I  

Figure 1. (a )  The density of states in the lower Hubbard subband for n C 1. The occupied 
states are shaded. (b)  The density of states in the upper Hubbard subband for n > 1. The 
occupied states are shaded. 

one obtains 

d3k n(k) d3k G:(E,  kli)a(k) COS k ,  
. (26) G ; ( E ) = / - - -  ( 2 ~ ) ’  E -  E(k) E - E(k) 

Substituting (23), (24), (26) into (10) one finds the surface density of states of holes with 
spin down 

d‘k 
N ; ( E )  = / m 6 ( E  - E @ ) )  (2jk sin’ k ,  

When calculating the integral on the right-hand side of (27) it is convenient to exploit 
the identity 

1 
cosp, - 2 ,  cosp, - 22 -~ 

0 = Re cosp, 

- nzS(cosp, - z,)6(cosp, - zz)) (28) 
9 9 

(cosp, - 21 cosp, - 2’ 
forImz,,Imz,+ +Oand -1 < R e z , , R e z , <  1. SoYP-termsin(24)and(27)maybe 
simply replaced by &functions multiplied by n when calculating N ; ( E ) .  After simple 
calculations we have a very simple result 

N ;  ( E )  = N :  (Elf(E) (29) 
which is formally the same as for the bulk case [ 5 ] .  The schematic picture of density of 
states for electrons (not for holes!) is shown in figure l(a). The discontinuity of N ; ( E )  
should be smoothed by the magnon frequency, so N ;  ( E )  tends continuously to zero as 
E +  EF (cf [4,5]). So the ferromagnetic state on the surface remains saturated because 
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there are no occupied electron states with a = -. Note that the number of holes on the 
surface 
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c, = dEf(NjN: ( E )  (30) 
-I 

variesas$/3forsmall bulkconcentrationcsinceN,(E) - IE - Ec13~'nearthebandedge, 
E,. Therefore the saturation average spin on the surface s, = (1 - cJ/2 is larger than 
.f= (1 -c) /2  in the bulk for small c. From (29) the sum rule (e) = (Xi-X.& = ( X p Y P )  holds sincef2(E) =!(E) and 

dEf(E)N;(Ej = I' dEf(E)N:(E) = c,. (31) I:, -z 

If one considers the case where n > 1 and introduces the 'doubly occupied states I 2) 
instead of hole ones one obtains similar results. The difference is that the states in the 
lower Hubbardsubbandareoccupiedonlyforo = + andforthe upper Hubbardsubband 
the picture is as shown in figure I(b). 

Thus if one considers the energy scale lAE( + (5 the empty states near the Fermi 
level at n < 1 and the occupied ones at n > 1 are depolarized on the surface (N: - 
N ; )  as well as in the bulk. So the predictions 161 of strong deviations of the results for 
spectroscopy of spin-polarized electrons from that of band structure calculations (i.e. 
the Hartree-Fock picture) appear to be valid even when surface effects are taken into 
account. 

In the present work the dispersion of the magnon spectrum has been neglected. To 
investigate thepossibilityofunsaturatedmagnetism at thesurface this must beincluded. 
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